跳过正文

推导 Baxter and King (1993) 中 Equation (14)-(18)

·1903 字
纪明光
作者
纪明光
一只野鹅

这篇论文扩展了 neoclassical model,在其中加入了公共资本和公共投资,用来研究政府购买和投资对于经济增长的影响。模型中,政府可以通过 lump-sum tax 或者比例税收来资助政府购买与公共投资,政府也可以选择暂时增加支出(比如战争)或者永久增加支出。这篇论文非常重要的一个贡献在于将公共资本融入了生产函数,而量化模拟结果对公共资本的规模报酬变化十分敏感。本文中推导的 Eq (14)-(18) 主要集中关注政府购买的情况,因此公共资本在生产函数中没有出现。

Setup
#

  • Representative agents.
  • Infinite horizon.

Preference
#

\[U(\cdot) = \mathbb{E}_1\sum_{t=1}^\infty \beta^{(t-1)}\left[\log (C_t) + \theta_L \log (L_t) + \Gamma(G_t^B, K_t^G)\right]\]

  • \(C_t\): 消费
  • \(L_t\): leisure
  • \(G_t^B\): 政府购买
  • \(K_t^G\): 公共资本

Technology
#

$$Y_t = F(K_t, K_t^G, N_t) = AK_t^{\theta_K}N_t^{\theta_N}\textcolor{blue}{(K_t^G)^{\theta_G}}$$

  • \(K_t\): 私人资本
  • \(\textcolor{blue}{K_t^G}\): 公共资本
  • \(N_t\): 劳动投入
  • 私人投入 Constant returns to scale: \(\theta_K + \theta_N = 1\)

Capital Evolution
#

  • \( K_{t+1} = \left[(1-\delta_K)K_t + I_t\right] \)
  • \( \textcolor{blue}{K_{t+1}^G} \textcolor{blue}{= \left[(1-\delta_K)K_t^G + I_t^G\right]}\)

Resource Constraints
#

  • Household:
    • \(L_t + N_t \leq 1\)
    • \(C_t + I_t \leq (1-\tau_t)Y_t + \text{TR}_t\)
  • Economy: \(C_t + I_t + G_t \leq Y_t\), where \(G_t := G_t^B + I_t^G\)

Public Finance Rules
#

\[\tau_t Y_t = G_t + \text{TR}_t\]

  • Lump-sum tax: \(\tau_t = 0\), 使用 \(\text{TR}_t\) 资助政府购买
  • 比例税率:
    • \(\tau_t = \frac{G_t + \text{TR}_t}{Y_t}\)
    • 假设转移支付恒定:\(\Delta \text{TR} = 0\)

Characterizing the Equilibrium
#

用 Lagrangian 和 First order conditions 很容易可以写出以下三个式子

  • \(\frac{\partial U(C_t, L_t, G_t^B, K_t^G)}{\partial C_t} = \lambda_t\)
  • \(\frac{\partial U(C_t, L_t, G_t^B, K_t^G)}{\partial L_t} = \lambda_t w_t,\) where \(\textcolor{blue}{w_t = (1-\tau_t)\frac{\partial F(\cdot)}{\partial N_t}}\)
  • \(\beta\mathbb{E}_t\bigl[\lambda_{t+1}\bigl(1+q_{t+1}-\delta_K \bigr)\bigr] = \lambda_t,\) where \( \textcolor{blue}{q_t = (1-\tau_t)\frac{\partial F(\cdot)}{\partial K_t}}\)

以及 transversality condition

  • \(\mathbb{E}_1\left[\lim_{t\rightarrow\infty} \beta^t\lambda_t K_{t+1}\right] = 0\)

为了简化式子,文章中定义了以下几个符号:

  • 资本劳动比 \(\kappa = K/N\)
  • Average product of labor \(\alpha = Y/N\)
  • 资本收入占国民收入比例 \(s_K = qK/Y = q\kappa/\alpha \)
  • 投资占国民收入比例 \(s_I = I/Y\)
  • 劳动收入占国民收入比例 \(s_N = wN/Y = w/\alpha\)
  • Share of leisure in full income: \(s_L^f = wL/Y^f\)
  • Full-income elasticity of leisure \(\eta_L = \frac{\Delta L/L}{\Delta Y^f/Y^f}\)

Equation (14), (15)
#

Eq (14): \(C_t +wL \leq Y^f\)

Eq (15): \(\frac{\Delta Y}{\Delta G} = = s_L^f\eta_L\)

这一部分考虑静态模型,假设用 lump-sum tax 来资助政府购买支出,即\(\tau_t = 0\)。假设 w 不变,我们可以定义 full income \(Y^f\)为一个人可以得到的收入上限\(Y^f := w + \Pi\),而在 lump-sum tax 的情况下,\(\Pi = -G\)。由于\(C_t \leq w(1-L)+ \Pi\),经过简单的替换,我们可以得到 Eq (14) \(C_t +wL \leq Y^f\)。

\(Y^f = w - G \Rightarrow \Delta Y^f = -\Delta G\)

\(N := 1-L \Rightarrow \Delta N = -\Delta L\)

\[\begin{aligned} \frac{\Delta Y}{\Delta G} = \frac{\Delta Y}{\Delta N}\frac{\Delta N}{\Delta Y^f}\frac{\Delta Y^f}{\Delta G} = w\frac{-\Delta L}{\Delta Y^f}(-1)= w\frac{L}{Y^f}\frac{Y^f}{L}\frac{\Delta L}{\Delta Y^f} = s_L^f\eta_L \end{aligned}\]

由此,我们也得到文章中的 Eq (15)。

Equation (16)
#

Eq (16): \(\frac{\Delta Y}{\Delta G} = \frac{s_L^f \eta_L/s_N }{1+s_L^f \eta_L(s_K - s_I)/s_N }\)

这一部分考虑动态模型,因此我们考虑 Capital law of motion。在这种情况下,收入上限中除了劳动收入,还包括资本收入、投资支出和政府支出。因此\(Y^f = w +qK - I- G\)。如果我们集中关注稳态中的投资支出,那么我么可以得到\( K = (1-\delta_K)K + I \),即\( I= \delta_K K \)。

我们也可以使用\(\kappa, \alpha, \delta_K\)来表示\(s_I\)

\[s_I = \frac{I}{Y} = \frac{I}{K}\frac{K}{N}\frac{N}{Y} = \delta_K \frac{\kappa}{\alpha}\]

因此,

\[\begin{aligned} Y^f &= w +qK - I- G = w +qK - \delta_K K- G = w +(q - \delta_K) K- G \\ &= w +(q - \delta_K) \kappa N \frac{\alpha}{\alpha} - G = w +\alpha(\frac{\kappa q}{\alpha} - \frac{\delta_K \kappa}{\alpha}) N - G\\ &= w +\alpha(s_K - s_I) N - G \end{aligned}\]

由全微分得到 \(\Delta Y^f= \alpha(s_K - s_I) \Delta N - \Delta G\)

由于 Eq (16) 计算的是\(G\)的变化和\(Y\)的变化之间的关系,而\(\Delta N, \Delta L\) 分别与\(\Delta Y^f, \Delta Y\)相关,我们可以从\(\Delta N=-\Delta L\),或者\(w\Delta N=-w\Delta L\)入手进行以下推导

\[\begin{aligned} w\Delta N &=-w\Delta L = -w \Delta L \frac{L}{Y^f}\frac{L}{Y^f}\frac{\Delta Y^f}{\Delta Y^f} \\[0.6em] &= - \frac{wL}{Y^f}\frac{L}{Y^f}\frac{\Delta L}{\Delta Y^f}\Delta Y^f\\[0.6em] &= -s_L^f \eta_L \Delta Y^f \\[0.6em] &= -s_L^f \eta_L [\alpha(s_K - s_I) \Delta N - \Delta G]\\[0.6em] \Rightarrow s_L^f \eta_L\Delta G &= [w+s_L^f \eta_L\alpha(s_K - s_I)] \Delta N \end{aligned}\]

由于\(Y = \alpha N \Rightarrow \Delta Y = \alpha \Delta N\),\(s_N = w/\alpha\),再以及结合以上推导,我们可以得到 Eq (16):

\[\begin{aligned} s_L^f \eta_L\Delta G &= [w+s_L^f \eta_L\alpha(s_K - s_I)] \frac{\Delta Y}{\alpha} \\[0.6em] \Leftrightarrow s_L^f \eta_L\Delta G &= [s_N+s_L^f \eta_L(s_K - s_I)]\Delta Y \\[0.6em] \frac{\Delta Y}{\Delta G} &= \frac{s_L^f \eta_L }{s_N+s_L^f \eta_L(s_K - s_I)}\\[0.6em] &= \frac{s_L^f \eta_L/s_N }{1+s_L^f \eta_L(s_K - s_I)/s_N } \end{aligned}\]

Equation (17), (18)
#

这一部分引入比例税率,假设 lump-sum tax 恒定,假设\(N\)恒定,我们可以通过 Public Finance Rules 以及生产函数和稳态情况下的 Euler equation 得到两组\(\Delta Y, \Delta \tau, \Delta G\)的式子,从而可以解出\(\Delta G\)分别与\(\Delta Y, \Delta \tau\)的关系,即增加政府支出如何影响经济增长和比例税率。因为我们主要关注稳态情况下的关系,我们将省略下标\(t\)。

由于假设 lump-sum tax 恒定,\(\Delta \text{TR} = 0\).对 Public Finance Rules 取全微分得到\[\begin{align}\tau \Delta Y + Y \Delta \tau = \Delta G\end{align}\]

接下来使用稳态情况下的 Euler Equation \(\beta\bigl(1+(1-\tau)\frac{\partial F(\cdot)}{\partial K}-\delta_K \bigr) = 1\)。

首先我们需要通过生产函数\(Y = A K^{\theta_K}N^{\theta_N}\)得到\(\frac{\partial F(\cdot)}{\partial K}\):

\[\frac{\partial F(\cdot)}{\partial K} = A \theta_K K^{\theta_K-1}N^{\theta_N} = \frac{A}{K} \theta_K K^{\theta_K}N^{\theta_N} = \frac{\theta_K Y}{K}\]

代入 Euler Equation:

\[\begin{aligned} &\beta\bigl(1+(1-\tau)\frac{\theta_K Y}{K}-\delta_K \bigr) = 1 \\[0.6em] \Leftrightarrow &K = \frac{\theta_K(1-\tau)}{\frac{1}{\beta} -1 + \delta_K}Y \end{aligned}\]

\(Z:= \theta_K/[\frac{1}{\beta} -1 + \delta_K]\),我们可以将以上式子写成\(K = Z(1-\tau)Y\)。

将这个式子代入到生产函数中

\[\begin{aligned} Y &= A K^{\theta_K}N^{\theta_N} = A (Z(1-\tau)Y)^{\theta_K}N^{\theta_N}\\[0.6em] \Rightarrow Y^{1-\theta_K} &= (1-\tau)^{\theta_K} AZ^{\theta_K}N^{\theta_N}\\[0.6em] \Rightarrow (1-\theta_K)\log Y &= \theta_K \log (1-\tau)+ \log (AZ^{\theta_K}N^{\theta_N})\\[0.6em] \Rightarrow (1-\theta_K)\log Y &= \theta_K \log (1-\tau)+ \log (AZ^{\theta_K}N^{\theta_N})\\[0.6em] \Rightarrow \frac{\Delta Y}{Y} &= \Delta \log Y = \frac{\theta_K}{1-\theta_K} \frac{1}{1-\tau}(-\Delta \tau)\\[0.6em] \Rightarrow \frac{\Delta Y}{\Delta \tau} &= -\frac{\theta_K}{1-\theta_K} \frac{1}{1-\tau}Y = -\frac{\theta_K}{\theta_N} \frac{1}{1-\tau}Y \end{aligned}\]

将这个式子代回(1)替换\(\Delta \tau\)将得到 Eq (17),替换\(\Delta Y\)将得到 Eq (18)。

Eq (17): \(\Delta Y = -\frac{\theta_K}{\theta_N-\tau}\Delta G\)

\[\begin{aligned} \Delta \tau &= -\frac{\theta_N(1-\tau)}{\theta_K} \frac{\Delta Y}{Y}\\[0.6em] \Rightarrow \Delta G &= \tau \Delta Y - Y \frac{\theta_N(1-\tau)}{\theta_K} \frac{\Delta Y}{Y} \\[0.6em] \Rightarrow \Delta G &= (\tau - \frac{\theta_N(1-\tau)}{\theta_K}) \Delta Y \\[0.6em] \Rightarrow \Delta G &= (\frac{\tau(\theta_K)-\theta_N(1-\tau)}{\theta_K}) \Delta Y \\[0.6em] \Rightarrow \Delta G &= \frac{\tau(1-\theta_N)-\theta_N(1-\tau)}{\theta_K} \Delta Y \\[0.6em] \Rightarrow \Delta Y &= -\frac{\theta_K}{\theta_N-\tau} \Delta Y \\[0.6em] \end{aligned}\]

Eq (18): \(\Delta \tau = (1-\tau)\frac{\theta_N}{\theta_N-\tau}\frac{\Delta G}{Y}\)

\[\begin{aligned} \Delta Y &= -\frac{\theta_K}{\theta_N(1-\tau)}Y \Delta \tau\\[0.6em] \Rightarrow \Delta G &= Y \Delta \tau -\tau \frac{\theta_K}{\theta_N(1-\tau)}Y \Delta \tau \\[0.6em] \Rightarrow \frac{\Delta G}{Y} &= (1 -\frac{\tau \theta_K}{\theta_N(1-\tau)})\Delta \tau\\[0.6em] \Rightarrow \frac{\Delta G}{Y} &= \frac{\theta_N(1-\tau)-\tau(1-\theta_N)}{\theta_N(1-\tau)} \Delta \tau\\[0.6em] \Rightarrow \frac{\Delta G}{Y} &= \frac{\theta_N-\tau}{\theta_N(1-\tau)}\Delta \tau\\[0.6em] \Rightarrow \Delta \tau&= \frac{\theta_N(1-\tau)}{\theta_N-\tau}\frac{\Delta G}{Y} \end{aligned}\]


 Phoenix 游记